Torsors, Étale Homotopy and Applications to Rational Points

Nonfiction, Science & Nature, Mathematics, Number Theory, Geometry
Cover of the book Torsors, Étale Homotopy and Applications to Rational Points by , Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781107241886
Publisher: Cambridge University Press Publication: April 18, 2013
Imprint: Cambridge University Press Language: English
Author:
ISBN: 9781107241886
Publisher: Cambridge University Press
Publication: April 18, 2013
Imprint: Cambridge University Press
Language: English

Torsors, also known as principal bundles or principal homogeneous spaces, are ubiquitous in mathematics. The purpose of this book is to present expository lecture notes and cutting-edge research papers on the theory and applications of torsors and étale homotopy, all written from different perspectives by leading experts. Part one of the book contains lecture notes on recent uses of torsors in geometric invariant theory and representation theory, plus an introduction to the étale homotopy theory of Artin and Mazur. Part two of the book features a milestone paper on the étale homotopy approach to the arithmetic of rational points. Furthermore, the reader will find a collection of research articles on algebraic groups and homogeneous spaces, rational and K3 surfaces, geometric invariant theory, rational points, descent and the Brauer–Manin obstruction. Together, these give a state-of-the-art view of a broad area at the crossroads of number theory and algebraic geometry.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Torsors, also known as principal bundles or principal homogeneous spaces, are ubiquitous in mathematics. The purpose of this book is to present expository lecture notes and cutting-edge research papers on the theory and applications of torsors and étale homotopy, all written from different perspectives by leading experts. Part one of the book contains lecture notes on recent uses of torsors in geometric invariant theory and representation theory, plus an introduction to the étale homotopy theory of Artin and Mazur. Part two of the book features a milestone paper on the étale homotopy approach to the arithmetic of rational points. Furthermore, the reader will find a collection of research articles on algebraic groups and homogeneous spaces, rational and K3 surfaces, geometric invariant theory, rational points, descent and the Brauer–Manin obstruction. Together, these give a state-of-the-art view of a broad area at the crossroads of number theory and algebraic geometry.

More books from Cambridge University Press

Cover of the book Nietzsche: Untimely Meditations by
Cover of the book Callimachus in Context by
Cover of the book String Theory: Volume 2, Superstring Theory and Beyond by
Cover of the book Herodotus: Histories Book V by
Cover of the book The Cambridge Companion to American Modernism by
Cover of the book The Quest for Mental Health by
Cover of the book An Introduction to Jewish-Christian Relations by
Cover of the book A History of Irish Autobiography by
Cover of the book Meaning and Linguistic Variation by
Cover of the book Sacrifice and Gender in Biblical Law by
Cover of the book State Food Crimes by
Cover of the book International Trade Disputes and EU Liability by
Cover of the book Martial Power and Elizabethan Political Culture by
Cover of the book The Cambridge Companion to Medieval Women's Writing by
Cover of the book A History of Irish Modernism by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy