Solution Thermodynamics and its Application to Aqueous Solutions

A Differential Approach

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical, Technology, Engineering, Chemical & Biochemical
Cover of the book Solution Thermodynamics and its Application to Aqueous Solutions by Yoshikata Koga, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Yoshikata Koga ISBN: 9780080551876
Publisher: Elsevier Science Publication: November 12, 2007
Imprint: Elsevier Science Language: English
Author: Yoshikata Koga
ISBN: 9780080551876
Publisher: Elsevier Science
Publication: November 12, 2007
Imprint: Elsevier Science
Language: English

As the title suggests, we introduce a novel differential approach to solution thermodynamics and use it for the study of aqueous solutions. We evaluate the quantities of higher order derivative than the normal thermodynamic functions. We allow these higher derivative data speak for themselves without resorting to any model system. We thus elucidate the molecular processes in solution, (referred to in this book “mixing scheme”), to the depth equal to, if not deeper, than that gained by spectroscopic and other methods. We show that there are three composition regions in aqueous solutions of non-electrolytes, each of which has a qualitatively distinct mixing scheme. The boundary between the adjacent regions is associated with an anomaly in the third derivatives of G. The loci of the anomalies in the temperature-composition field form the line sometimes referred as “Koga line”. We then take advantage of the anomaly of a third derivative quantity of 1-propanol in the ternary aqueous solution, 1-propanol – sample species – H2O. We use its induced change as a probe of the effect of a sample species on H2O. In this way, we clarified what a hydrophobe, or a hydrophile, and in turn, an amphiphile, does to H2O. We also apply the same methodology to ions that have been ranked by the Hofmeister series. We show that the kosmotropes (salting out, or stabilizing agents) are either hydrophobes or hydration centres, and that chaotropes (salting in, or destablizing agents) are hydrophiles.

  • A new differential approach to solution thermodynamics
  • A particularly clear elucidation of the mixing schemes in aqueous solutions
  • A clear understandings on the effects of hydrophobes, hydrophiles, and amphiphiles to H2O
  • A clear understandings on the effects of ions on H2O in relation to the Hofmeister effect
  • A new differential approach to studies in muti-component aqueous solutions
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

As the title suggests, we introduce a novel differential approach to solution thermodynamics and use it for the study of aqueous solutions. We evaluate the quantities of higher order derivative than the normal thermodynamic functions. We allow these higher derivative data speak for themselves without resorting to any model system. We thus elucidate the molecular processes in solution, (referred to in this book “mixing scheme”), to the depth equal to, if not deeper, than that gained by spectroscopic and other methods. We show that there are three composition regions in aqueous solutions of non-electrolytes, each of which has a qualitatively distinct mixing scheme. The boundary between the adjacent regions is associated with an anomaly in the third derivatives of G. The loci of the anomalies in the temperature-composition field form the line sometimes referred as “Koga line”. We then take advantage of the anomaly of a third derivative quantity of 1-propanol in the ternary aqueous solution, 1-propanol – sample species – H2O. We use its induced change as a probe of the effect of a sample species on H2O. In this way, we clarified what a hydrophobe, or a hydrophile, and in turn, an amphiphile, does to H2O. We also apply the same methodology to ions that have been ranked by the Hofmeister series. We show that the kosmotropes (salting out, or stabilizing agents) are either hydrophobes or hydration centres, and that chaotropes (salting in, or destablizing agents) are hydrophiles.

More books from Elsevier Science

Cover of the book Assessment of Vulnerability to Natural Hazards by Yoshikata Koga
Cover of the book Development of Packaging and Products for Use in Microwave Ovens by Yoshikata Koga
Cover of the book Lipid Oxidation by Yoshikata Koga
Cover of the book A Comprehensive Database of Tests on Axially Loaded Piles Driven in Sand by Yoshikata Koga
Cover of the book Refrigeration, Air Conditioning and Heat Pumps by Yoshikata Koga
Cover of the book Transport Phenomena in Porous Media III by Yoshikata Koga
Cover of the book Manual of Engineering Drawing by Yoshikata Koga
Cover of the book Food Quality: Balancing Health and Disease by Yoshikata Koga
Cover of the book Performance and Improvement of Green Construction Projects by Yoshikata Koga
Cover of the book Reducing Saturated Fats in Foods by Yoshikata Koga
Cover of the book The Alkaloids by Yoshikata Koga
Cover of the book Fungal Genomics by Yoshikata Koga
Cover of the book Hydraulic Fracturing in Unconventional Reservoirs by Yoshikata Koga
Cover of the book Understanding AC Circuits by Yoshikata Koga
Cover of the book Advances in Renewable Energies and Power Technologies by Yoshikata Koga
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy