Quaternionen und andere Zahlbereiche. Was kommt nach den komplexen Zahlen?

Was kommt nach den komplexen Zahlen?

Nonfiction, Science & Nature, Mathematics, Number Theory
Cover of the book Quaternionen und andere Zahlbereiche. Was kommt nach den komplexen Zahlen? by Bastian Vincken, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Bastian Vincken ISBN: 9783638328708
Publisher: GRIN Verlag Publication: November 29, 2004
Imprint: GRIN Verlag Language: German
Author: Bastian Vincken
ISBN: 9783638328708
Publisher: GRIN Verlag
Publication: November 29, 2004
Imprint: GRIN Verlag
Language: German

Examensarbeit aus dem Jahr 2004 im Fachbereich Mathematik - Zahlentheorie, Note: 1,3, Rheinisch-Westfälische Technische Hochschule Aachen (Lehrstuhl A für Mathematik), 23 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Das traditionelle Zahlensystem gilt als wichtigste Grundlage in der Mathematik. Der Aufbau dieses Zahlensystems beginnt seit dem Ende des 19. Jahrhunderts bei den natürlichen Zahlen. Diese werden dann schrittweise zu den ganzen, den rationalen, den reellen bis hin zu den komplexen Zahlen erweitert. Die Schulmathematik umfasst im besten Fall das Zahlensystem bis hin zu den komplexen Zahlen. In dieser Arbeit wollen wir uns mit der Frage beschäftigen, ob es jenseits der komplexen Zahlen noch andere Zahlbereiche zu konstruieren gibt und inwieweit diese noch sinnvoll sind. Diese hyperkomplexen Zahlbereiche werden seit Beginn des 20. Jahrhunderts reelle Algebren genannt. Möchte man sich analog zu den komplexen Zahlen, die einen zweidimensionalen reellen Vektorraum bilden, höherdimensionale reelle Vektorräume zu hyperkomplexen Zahlbereichen machen, muss man entweder die Endlichkeit der Dimension aufgeben oder aber auf vertraute Körperaxiome wie die der Kommutativität oder der Assoziativität oder gar auf die Möglichkeit der Division verzichten. In dieser Arbeit werden wir uns auf die endlichdimensionalen Divisionsalgebren beschränken. Dies bedeutet, dass wir an der Endlichkeit der Dimension und der Möglichkeit der Division festhalten werden. Sollten wir diese Eigenschaften aufgeben, so würden wir von einer Masse neuer Zahlbereiche erschlagen werden. Diese neuen Zahlbereiche werden Eigenschaften aufweisen, die uns auf den ersten Blick merkwürdig vorkommen. Der _Vollständigkeitssatz_ der reellen Zahlen beinhaltet vomWort her schon eine gewisse _Vollständigkeit_ des Zahlbereichs. Wir werden feststellen, dass, je weiter man sich von den reellen Zahlen entfernt, immer mehr uns vertraute Eigenschaften verloren gehen und in diesem Zusammenhang deutlich machen, welche Kuriositäten mit deren Wegfall einhergehen. Hamilton schuf im Jahre 1843, nachdem er die komplexen Zahlen als erster rein arithmetisch begründet hatte, den vierdimensionalen Schiefkörper H der Quaternionen. Kurz darauf konstruierten Graves und Cayley die achtdimensionale Divisionsalgebra O der Oktonionen. Die Quaternionen sind bezüglich der Multiplikation nicht mehr kommutativ und bei den Oktonionen ist zusätzlich noch die Assoziativität verletzt. Bei beiden Zahlbereichen ist jedoch die Division noch eindeutig ausführbar.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Examensarbeit aus dem Jahr 2004 im Fachbereich Mathematik - Zahlentheorie, Note: 1,3, Rheinisch-Westfälische Technische Hochschule Aachen (Lehrstuhl A für Mathematik), 23 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Das traditionelle Zahlensystem gilt als wichtigste Grundlage in der Mathematik. Der Aufbau dieses Zahlensystems beginnt seit dem Ende des 19. Jahrhunderts bei den natürlichen Zahlen. Diese werden dann schrittweise zu den ganzen, den rationalen, den reellen bis hin zu den komplexen Zahlen erweitert. Die Schulmathematik umfasst im besten Fall das Zahlensystem bis hin zu den komplexen Zahlen. In dieser Arbeit wollen wir uns mit der Frage beschäftigen, ob es jenseits der komplexen Zahlen noch andere Zahlbereiche zu konstruieren gibt und inwieweit diese noch sinnvoll sind. Diese hyperkomplexen Zahlbereiche werden seit Beginn des 20. Jahrhunderts reelle Algebren genannt. Möchte man sich analog zu den komplexen Zahlen, die einen zweidimensionalen reellen Vektorraum bilden, höherdimensionale reelle Vektorräume zu hyperkomplexen Zahlbereichen machen, muss man entweder die Endlichkeit der Dimension aufgeben oder aber auf vertraute Körperaxiome wie die der Kommutativität oder der Assoziativität oder gar auf die Möglichkeit der Division verzichten. In dieser Arbeit werden wir uns auf die endlichdimensionalen Divisionsalgebren beschränken. Dies bedeutet, dass wir an der Endlichkeit der Dimension und der Möglichkeit der Division festhalten werden. Sollten wir diese Eigenschaften aufgeben, so würden wir von einer Masse neuer Zahlbereiche erschlagen werden. Diese neuen Zahlbereiche werden Eigenschaften aufweisen, die uns auf den ersten Blick merkwürdig vorkommen. Der _Vollständigkeitssatz_ der reellen Zahlen beinhaltet vomWort her schon eine gewisse _Vollständigkeit_ des Zahlbereichs. Wir werden feststellen, dass, je weiter man sich von den reellen Zahlen entfernt, immer mehr uns vertraute Eigenschaften verloren gehen und in diesem Zusammenhang deutlich machen, welche Kuriositäten mit deren Wegfall einhergehen. Hamilton schuf im Jahre 1843, nachdem er die komplexen Zahlen als erster rein arithmetisch begründet hatte, den vierdimensionalen Schiefkörper H der Quaternionen. Kurz darauf konstruierten Graves und Cayley die achtdimensionale Divisionsalgebra O der Oktonionen. Die Quaternionen sind bezüglich der Multiplikation nicht mehr kommutativ und bei den Oktonionen ist zusätzlich noch die Assoziativität verletzt. Bei beiden Zahlbereichen ist jedoch die Division noch eindeutig ausführbar.

More books from GRIN Verlag

Cover of the book Stumme Körper, brennende Schriften - Medien- und Körperinszenierungen in Christoph Ransmayrs 'Die letzte Welt' by Bastian Vincken
Cover of the book Auswertung der Mitarbeiterbefragung der Firma Oelgemoeller Wurstwaren AG über soziodemografische und firmenspezifische Angaben mit SPSS by Bastian Vincken
Cover of the book Einführung in die Biographieforschung mit geschichtlichem Rückblick by Bastian Vincken
Cover of the book Das Fernsehen als Wahlkampfmedium in den USA und die wachsende Negativität in Wahlwerbespots by Bastian Vincken
Cover of the book Triangulation in der selektiven Fernsehnutzung by Bastian Vincken
Cover of the book Alternative Konzepte zur Neugestaltung der EU-Haushaltsfinanzierung by Bastian Vincken
Cover of the book Der europäische Rat und Ministerrat by Bastian Vincken
Cover of the book Computer Viruses. History, Reasons and Effects on Society by Bastian Vincken
Cover of the book Definitionen von Gesundheit - Implikationen für das Individuum, die medizinisch/pflegerische Versorgung und die Gesundheitspsychologie by Bastian Vincken
Cover of the book Die 3 soziologischen Apriori bei Georg Simmel - Exkurs über das Problem: Wie ist Gesellschaft möglich? by Bastian Vincken
Cover of the book Boethius, De institutione musica libri quinque - Liber primus, VIII. & VIIII. by Bastian Vincken
Cover of the book Rekonstruktion des geschlechtertheoretischen Ansatzes Judith Butlers. Ein neuartiger, radikaler Ansatz in der Geschlechtertheorie? by Bastian Vincken
Cover of the book Intensive sozialpädagogische Einzelbetreuung by Bastian Vincken
Cover of the book Globalisation and Development: Assessing Factors that impede Development among the Economic Community of West African States (ECOWAS) by Bastian Vincken
Cover of the book Absolute Armut in Deutschland by Bastian Vincken
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy