Predictive Econometrics and Big Data

Business & Finance, Economics, Econometrics, Nonfiction, Computers, Advanced Computing, Artificial Intelligence, General Computing
Cover of the book Predictive Econometrics and Big Data by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319709420
Publisher: Springer International Publishing Publication: November 30, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319709420
Publisher: Springer International Publishing
Publication: November 30, 2017
Imprint: Springer
Language: English

This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques – which directly aim at predicting economic phenomena; and big data techniques – which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems.

Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques – which directly aim at predicting economic phenomena; and big data techniques – which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems.

Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.

More books from Springer International Publishing

Cover of the book Consumption and Life-Styles by
Cover of the book Classifying the Cosmos by
Cover of the book Student Entrepreneurship in the Social Knowledge Economy by
Cover of the book Sustainable Agriculture Reviews by
Cover of the book Operative Approaches to Nipple-Sparing Mastectomy by
Cover of the book Passenger Car Tires and Wheels by
Cover of the book Early Investigations of Ceres and the Discovery of Pallas by
Cover of the book Landforms and Landscape Evolution of the Equatorial Margin of Northeast Brazil by
Cover of the book Prediction and Calculation of Crystal Structures by
Cover of the book Recent Trends in Philosophical Logic by
Cover of the book Stem Cells in Animal Species: From Pre-clinic to Biodiversity by
Cover of the book Optimized Packings with Applications by
Cover of the book Large-Scale Land Investments in Least Developed Countries by
Cover of the book Modeling Decisions for Artificial Intelligence by
Cover of the book Operational Symmetries by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy