Physics of Carbon Nanotube Devices

Nonfiction, Science & Nature, Technology, Material Science, Science, Physics, General Physics
Cover of the book Physics of Carbon Nanotube Devices by Francois Leonard, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Francois Leonard ISBN: 9780815519683
Publisher: Elsevier Science Publication: November 18, 2008
Imprint: William Andrew Language: English
Author: Francois Leonard
ISBN: 9780815519683
Publisher: Elsevier Science
Publication: November 18, 2008
Imprint: William Andrew
Language: English

Possibly the most impactful material in the nanotechnology arena, carbon nanotubes have spurred a tremendous amount of scientific research and development. Their superior mechanical and chemical robustness makes them easily manipulable and allows for the assembly of various types of devices, including electronic, electromechanical, opto-electronic and sensing devices.

In the field of nanotube devices, however, concepts that describe the properties of conventional devices do not apply. Carbon nanotube devices behave much differently from those using traditional materials, and offer entirely new functionality. This book – designed for researchers, engineers and graduate students alike – bridges the experimental and theoretical aspects of carbon nanotube devices. It emphasizes and explains the underlying physics that govern their working principles, including applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Many of the aspects discussed here differ significantly from those learned in books or traditional materials, and are essential for the future development of carbon nanotube technology.

• Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles
• Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing.
• Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission.
• Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.

* Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles
* Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing.
* Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission
* Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Possibly the most impactful material in the nanotechnology arena, carbon nanotubes have spurred a tremendous amount of scientific research and development. Their superior mechanical and chemical robustness makes them easily manipulable and allows for the assembly of various types of devices, including electronic, electromechanical, opto-electronic and sensing devices.

In the field of nanotube devices, however, concepts that describe the properties of conventional devices do not apply. Carbon nanotube devices behave much differently from those using traditional materials, and offer entirely new functionality. This book – designed for researchers, engineers and graduate students alike – bridges the experimental and theoretical aspects of carbon nanotube devices. It emphasizes and explains the underlying physics that govern their working principles, including applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Many of the aspects discussed here differ significantly from those learned in books or traditional materials, and are essential for the future development of carbon nanotube technology.

• Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles
• Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing.
• Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission.
• Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.

* Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles
* Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing.
* Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission
* Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.

More books from Elsevier Science

Cover of the book Advances in Applied Microbiology by Francois Leonard
Cover of the book Best Synthetic Methods by Francois Leonard
Cover of the book Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins by Francois Leonard
Cover of the book Electrical Power Systems by Francois Leonard
Cover of the book Advances in Agronomy by Francois Leonard
Cover of the book Aquafeed Formulation by Francois Leonard
Cover of the book In Vivo Models to Study Angiogenesis by Francois Leonard
Cover of the book Logistics Operations and Management by Francois Leonard
Cover of the book Dairy in Human Health and Disease across the Lifespan by Francois Leonard
Cover of the book Epidemiology and Medical Statistics by Francois Leonard
Cover of the book Nanotechnology for Microelectronics and Optoelectronics by Francois Leonard
Cover of the book Metagenomics by Francois Leonard
Cover of the book Operational Aspects of Oil and Gas Well Testing by Francois Leonard
Cover of the book Nuts and Seeds in Health and Disease Prevention by Francois Leonard
Cover of the book DNA Methylation and Complex Human Disease by Francois Leonard
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy