Optimization in Solving Elliptic Problems

Nonfiction, Science & Nature, Mathematics, Applied
Cover of the book Optimization in Solving Elliptic Problems by Eugene G. D'yakonov, CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Eugene G. D'yakonov ISBN: 9781351092111
Publisher: CRC Press Publication: May 4, 2018
Imprint: CRC Press Language: English
Author: Eugene G. D'yakonov
ISBN: 9781351092111
Publisher: CRC Press
Publication: May 4, 2018
Imprint: CRC Press
Language: English

Optimization in Solving Elliptic Problems focuses on one of the most interesting and challenging problems of computational mathematics - the optimization of numerical algorithms for solving elliptic problems. It presents detailed discussions of how asymptotically optimal algorithms may be applied to elliptic problems to obtain numerical solutions meeting certain specified requirements. Beginning with an outline of the fundamental principles of numerical methods, this book describes how to construct special modifications of classical finite element methods such that for the arising grid systems, asymptotically optimal iterative methods can be applied.
Optimization in Solving Elliptic Problems describes the construction of computational algorithms resulting in the required accuracy of a solution and having a pre-determined computational complexity. Construction of asymptotically optimal algorithms is demonstrated for multi-dimensional elliptic boundary value problems under general conditions. In addition, algorithms are developed for eigenvalue problems and Navier-Stokes problems. The development of these algorithms is based on detailed discussions of topics that include accuracy estimates of projective and difference methods, topologically equivalent grids and triangulations, general theorems on convergence of iterative methods, mixed finite element methods for Stokes-type problems, methods of solving fourth-order problems, and methods for solving classical elasticity problems.
Furthermore, the text provides methods for managing basic iterative methods such as domain decomposition and multigrid methods. These methods, clearly developed and explained in the text, may be used to develop algorithms for solving applied elliptic problems. The mathematics necessary to understand the development of such algorithms is provided in the introductory material within the text, and common specifications of algorithms that have been developed for typical problems in mathema

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Optimization in Solving Elliptic Problems focuses on one of the most interesting and challenging problems of computational mathematics - the optimization of numerical algorithms for solving elliptic problems. It presents detailed discussions of how asymptotically optimal algorithms may be applied to elliptic problems to obtain numerical solutions meeting certain specified requirements. Beginning with an outline of the fundamental principles of numerical methods, this book describes how to construct special modifications of classical finite element methods such that for the arising grid systems, asymptotically optimal iterative methods can be applied.
Optimization in Solving Elliptic Problems describes the construction of computational algorithms resulting in the required accuracy of a solution and having a pre-determined computational complexity. Construction of asymptotically optimal algorithms is demonstrated for multi-dimensional elliptic boundary value problems under general conditions. In addition, algorithms are developed for eigenvalue problems and Navier-Stokes problems. The development of these algorithms is based on detailed discussions of topics that include accuracy estimates of projective and difference methods, topologically equivalent grids and triangulations, general theorems on convergence of iterative methods, mixed finite element methods for Stokes-type problems, methods of solving fourth-order problems, and methods for solving classical elasticity problems.
Furthermore, the text provides methods for managing basic iterative methods such as domain decomposition and multigrid methods. These methods, clearly developed and explained in the text, may be used to develop algorithms for solving applied elliptic problems. The mathematics necessary to understand the development of such algorithms is provided in the introductory material within the text, and common specifications of algorithms that have been developed for typical problems in mathema

More books from CRC Press

Cover of the book Environmental Management of Marine Ecosystems by Eugene G. D'yakonov
Cover of the book Handbook of Optical Design by Eugene G. D'yakonov
Cover of the book Settled Asbestos Dust Sampling and Analysis by Eugene G. D'yakonov
Cover of the book Manual of Environmental Management by Eugene G. D'yakonov
Cover of the book Animal Models in Medical Mycology by Eugene G. D'yakonov
Cover of the book Student Solutions Manual for Nonlinear Dynamics and Chaos, 2nd edition by Eugene G. D'yakonov
Cover of the book Protecting Mobile Networks and Devices by Eugene G. D'yakonov
Cover of the book Serotonin and Melatonin by Eugene G. D'yakonov
Cover of the book Industrial Hygiene by Eugene G. D'yakonov
Cover of the book How Safe is Safe Enough? by Eugene G. D'yakonov
Cover of the book Bioengineering and Biophysical Aspects of Electromagnetic Fields, Fourth Edition by Eugene G. D'yakonov
Cover of the book Receptor Phosphorylation by Eugene G. D'yakonov
Cover of the book IET Wiring Regulations: Explained and Illustrated, 11th ed by Eugene G. D'yakonov
Cover of the book How Healthcare Data Privacy Is Almost Dead ... and What Can Be Done to Revive It! by Eugene G. D'yakonov
Cover of the book Lean Six Sigma for Small and Medium Sized Enterprises by Eugene G. D'yakonov
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy