Mathematical Methods and Models in Biomedicine

Nonfiction, Science & Nature, Mathematics, Applied, Science, Biological Sciences
Cover of the book Mathematical Methods and Models in Biomedicine by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461441786
Publisher: Springer New York Publication: October 20, 2012
Imprint: Springer Language: English
Author:
ISBN: 9781461441786
Publisher: Springer New York
Publication: October 20, 2012
Imprint: Springer
Language: English

Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

More books from Springer New York

Cover of the book Vitreous by
Cover of the book Epidemiological and Molecular Aspects on Cholera by
Cover of the book Human Development and Criminal Behavior by
Cover of the book Optical Metamaterials by
Cover of the book Endobronchial Ultrasound by
Cover of the book Vision and Attention by
Cover of the book Cancer Immunotherapy by
Cover of the book Mental Health Computing by
Cover of the book Magnetic Resonance Elastography by
Cover of the book Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts by
Cover of the book U.S. Social Welfare Reform by
Cover of the book Modelling and Simulation in Fluid Dynamics in Porous Media by
Cover of the book Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications by
Cover of the book Nanowire Field Effect Transistors: Principles and Applications by
Cover of the book Perinatal Stem Cells by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy