Manipulation of Multiphase Materials for Touch-less Nanobiotechnology

A Pyrofluidic Platform

Nonfiction, Science & Nature, Technology, Nanotechnology, Material Science
Cover of the book Manipulation of Multiphase Materials for Touch-less Nanobiotechnology by Sara Coppola, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Sara Coppola ISBN: 9783319310596
Publisher: Springer International Publishing Publication: April 3, 2016
Imprint: Springer Language: English
Author: Sara Coppola
ISBN: 9783319310596
Publisher: Springer International Publishing
Publication: April 3, 2016
Imprint: Springer
Language: English

The thesis presents an original and smart way to manipulate liquid and polymeric materials using a “pyro-fluidic platform” which exploits the pyro-electric effect activated onto a ferroelectric crystal. It describes a great variety of functionalities of the pyro-electrohydrodynamic platform, such as droplet self-assembling and dispensing, for manipulating multiphase liquids at the micro- and nanoscale. The thesis demonstrates the feasibility of non-contact self-assembling of liquids in plane (1D) using a micro engineered crystal, improving the dispensing capability and the smart transfer of material between two different planes (2D) and controlling and fabricating three-dimensional structures (3D).

The thesis present the fabrication of highly integrated and automated ‘lab-on-a-chip’ systems based on microfluidics. The pyro-platform presented herein offers the great advantage of enabling the actuation of liquids in contact with a polar dielectric crystal through an electrode-less configuration. The simplicity and flexibility of the method for fabricating 3D polymer microstructures shows the great potential of the pyro-platform functionalities, exploitable in many fields, from optics to biosensing. In particular, this thesis reports the fabrication of optically active elements, such as nanodroplets, microlenses and microstructures, which have many potential applications in photonics.

The capability for manipulating the samples of interest in a touch-less modality is very attractive for biological and chemical assays. Besides controlling cell growth and fate, smart micro-elements could deliver optical stimuli from and to cells monitoring their growth in real time, opening interesting perspectives for the realization of optically active scaffolds made of nanoengineered functional elements, thus paving the way to fascinating Optogenesis Studies.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The thesis presents an original and smart way to manipulate liquid and polymeric materials using a “pyro-fluidic platform” which exploits the pyro-electric effect activated onto a ferroelectric crystal. It describes a great variety of functionalities of the pyro-electrohydrodynamic platform, such as droplet self-assembling and dispensing, for manipulating multiphase liquids at the micro- and nanoscale. The thesis demonstrates the feasibility of non-contact self-assembling of liquids in plane (1D) using a micro engineered crystal, improving the dispensing capability and the smart transfer of material between two different planes (2D) and controlling and fabricating three-dimensional structures (3D).

The thesis present the fabrication of highly integrated and automated ‘lab-on-a-chip’ systems based on microfluidics. The pyro-platform presented herein offers the great advantage of enabling the actuation of liquids in contact with a polar dielectric crystal through an electrode-less configuration. The simplicity and flexibility of the method for fabricating 3D polymer microstructures shows the great potential of the pyro-platform functionalities, exploitable in many fields, from optics to biosensing. In particular, this thesis reports the fabrication of optically active elements, such as nanodroplets, microlenses and microstructures, which have many potential applications in photonics.

The capability for manipulating the samples of interest in a touch-less modality is very attractive for biological and chemical assays. Besides controlling cell growth and fate, smart micro-elements could deliver optical stimuli from and to cells monitoring their growth in real time, opening interesting perspectives for the realization of optically active scaffolds made of nanoengineered functional elements, thus paving the way to fascinating Optogenesis Studies.

More books from Springer International Publishing

Cover of the book Multicomponent Silicides for Thermoelectric Materials by Sara Coppola
Cover of the book The Transformation of British and American Naval Policy in the Pre-Dreadnought Era by Sara Coppola
Cover of the book Quantum Metrology, Imaging, and Communication by Sara Coppola
Cover of the book Religious Diversity in European Prisons by Sara Coppola
Cover of the book Exploring Memory Hierarchy Design with Emerging Memory Technologies by Sara Coppola
Cover of the book Encountering, Experiencing and Shaping Careers by Sara Coppola
Cover of the book Architecture of Computing Systems – ARCS 2018 by Sara Coppola
Cover of the book The Ancient Nasca World by Sara Coppola
Cover of the book Bioprospects of Coastal Eubacteria by Sara Coppola
Cover of the book Heat Shock Protein Inhibitors by Sara Coppola
Cover of the book Economics with Heterogeneous Interacting Agents by Sara Coppola
Cover of the book Cancer Immunotherapy Meets Oncology by Sara Coppola
Cover of the book Bionanocomposites for Packaging Applications by Sara Coppola
Cover of the book Econophysics and Sociophysics: Recent Progress and Future Directions by Sara Coppola
Cover of the book Regional Economic Organizations and Conventional Security Challenges by Sara Coppola
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy