Laser Ignition of Internal Combustion Engines

Basic Laser and Ignition Optics Developments, Engine Application and Optical Diagnostics

Nonfiction, Science & Nature, Technology, Electricity
Cover of the book Laser Ignition of Internal Combustion Engines by Martin Weinrotter, GRIN Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Martin Weinrotter ISBN: 9783640881345
Publisher: GRIN Publishing Publication: March 31, 2011
Imprint: GRIN Publishing Language: English
Author: Martin Weinrotter
ISBN: 9783640881345
Publisher: GRIN Publishing
Publication: March 31, 2011
Imprint: GRIN Publishing
Language: English

Doctoral Thesis / Dissertation from the year 2006 in the subject Electrotechnology, grade: 1, mit Ausgezeichnung bestanden, Vienna University of Technology (Insitut für Photonik), language: English, abstract: In this PhD thesis different fundamental aspects and the practical usability of a laser ignition system as a new, innovative and alternative ignition approach for internal combustion engines were investigated in great detail mainly experimentally. Ignition experiments in combustion chambers under high pressures and elevated temperatures have been conducted. Different fuels were investigated. Also the minimum breakdown energy in dependence of the initial temperature and pressure with the help of an aspheric lens with a high numerical aperture was studied. High-speed Schlieren diagnostics have been conducted in the combustion chamber. The different stages like the ignition plasma within the first nanoseconds via the shock wave generation to the expanding flame kernel were investigated. With the help of multi-point ignition the combustion duration could be reduced significantly. The controlled start of auto-ignition of n-heptane-air mixtures by resonant absorption of Er,Cr:YSGG laser radiation at 2.78 µm by additionally introduced water has been proven in combustion chamber experiments as a completely new idea. Beside experiments in the combustion chambers and long term tests under atmospheric conditions, various tests in SI engines up to 200 h, have been made. Different sources of contamination of the window surface have been identified. First experiments with a longitudinally diode-pumped, fiber-coupled and passively Q-switched solid-state laser ?-prototype system with maximum pulse energy of 1.5 mJ at about 1.5 ns pulse duration were performed which allowed to ignite the engine successfully over a test period of 100 h. In cooperation with Lund University in Sweden, experiments have been performed on another engine test bed running in HCCI mode revealing the laser spark to be able to stimulate the auto-ignition process and to trigger the onset of combustion. In another international cooperation conducted with the Southwest Research Institute in Texas, U.S.A., the potential of laser ignition in combination with the so called HEDGE concept was studied. As a final direction of the work, first calculations and experiments of a ?- prototype ignition laser of an own design have been conducted. The concept of a longitudinally diode-pumped, fiber-coupled and passively Q-switched solid-state laser was chosen as the most promising. Emitted pulse energy of 2 mJ within around 1 ns pulse duration was achieved easily allowing generating a laser-induced breakdown in air.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Doctoral Thesis / Dissertation from the year 2006 in the subject Electrotechnology, grade: 1, mit Ausgezeichnung bestanden, Vienna University of Technology (Insitut für Photonik), language: English, abstract: In this PhD thesis different fundamental aspects and the practical usability of a laser ignition system as a new, innovative and alternative ignition approach for internal combustion engines were investigated in great detail mainly experimentally. Ignition experiments in combustion chambers under high pressures and elevated temperatures have been conducted. Different fuels were investigated. Also the minimum breakdown energy in dependence of the initial temperature and pressure with the help of an aspheric lens with a high numerical aperture was studied. High-speed Schlieren diagnostics have been conducted in the combustion chamber. The different stages like the ignition plasma within the first nanoseconds via the shock wave generation to the expanding flame kernel were investigated. With the help of multi-point ignition the combustion duration could be reduced significantly. The controlled start of auto-ignition of n-heptane-air mixtures by resonant absorption of Er,Cr:YSGG laser radiation at 2.78 µm by additionally introduced water has been proven in combustion chamber experiments as a completely new idea. Beside experiments in the combustion chambers and long term tests under atmospheric conditions, various tests in SI engines up to 200 h, have been made. Different sources of contamination of the window surface have been identified. First experiments with a longitudinally diode-pumped, fiber-coupled and passively Q-switched solid-state laser ?-prototype system with maximum pulse energy of 1.5 mJ at about 1.5 ns pulse duration were performed which allowed to ignite the engine successfully over a test period of 100 h. In cooperation with Lund University in Sweden, experiments have been performed on another engine test bed running in HCCI mode revealing the laser spark to be able to stimulate the auto-ignition process and to trigger the onset of combustion. In another international cooperation conducted with the Southwest Research Institute in Texas, U.S.A., the potential of laser ignition in combination with the so called HEDGE concept was studied. As a final direction of the work, first calculations and experiments of a ?- prototype ignition laser of an own design have been conducted. The concept of a longitudinally diode-pumped, fiber-coupled and passively Q-switched solid-state laser was chosen as the most promising. Emitted pulse energy of 2 mJ within around 1 ns pulse duration was achieved easily allowing generating a laser-induced breakdown in air.

More books from GRIN Publishing

Cover of the book Why Is the Issue Raised in Romans 9-11 So Important for Paul and How Does He Respond? by Martin Weinrotter
Cover of the book How do the ideas of economic theory help us to understand the operation of interfirm collaboration such as joint ventures and alliances by Martin Weinrotter
Cover of the book Gun Policy. A critical analysis of firearm laws in the United States of America by Martin Weinrotter
Cover of the book Social Networks & Social Network Analysis in Companies by Martin Weinrotter
Cover of the book The EU External Relations after the Lisbon Treaty by Martin Weinrotter
Cover of the book Baroness Elsa von Freytag-Loringhoven: Her Life, Art and Postion in New York Dada by Martin Weinrotter
Cover of the book Journalism in Times of War by Martin Weinrotter
Cover of the book The potential threat of corporate growth by Martin Weinrotter
Cover of the book Jamie Oliver as a Manager and the Managing of his Restaurant 'Fifteen' by Martin Weinrotter
Cover of the book The Great Gatsby and the American Dream by Martin Weinrotter
Cover of the book Comparison between a Dictionary and Roget's Thesaurus by Martin Weinrotter
Cover of the book Transitivity, Mood, Theme / Rheme and Lexical Density / Grammatical Metaphors in Newsweek Magazine Articles by Martin Weinrotter
Cover of the book Race, Ethnicity and Identity on the Internet by Martin Weinrotter
Cover of the book Project Finance by Martin Weinrotter
Cover of the book What is a group and how does a group function? Group dynamics and the model according to Bruce Tuckman and Ruth Cohn by Martin Weinrotter
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy