Inside the International Space Station (ISS): NASA Electrical Power System Astronaut Training Manual

Nonfiction, Science & Nature, Science, Physics, Astronomy
Cover of the book Inside the International Space Station (ISS): NASA Electrical Power System Astronaut Training Manual by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781466036161
Publisher: Progressive Management Publication: December 15, 2011
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781466036161
Publisher: Progressive Management
Publication: December 15, 2011
Imprint: Smashwords Edition
Language: English

Learn about the International Space Station (ISS) from the textbooks used by the astronauts! These astronaut and flight controller training manuals, produced by the Mission Operations Directorate (Space Flight Training Division branch) at NASA's Johnson Space Center, represent a major part of the formal flight crew training process. The manuals and workbooks are extremely detailed and comprehensive, and are designed for self-study. A full listing of all acronyms and abbreviations used in the text is included. They provide a superb way to learn about Station systems, hardware, and operational procedures. Special emphasis on crew interaction with the displays, controls, and hardware is included.

This training manual covers the ISS electrical power system (EPS). The International Space Station (ISS) requires electrical power for all ISS functions: command and control, communications, lighting, life support, etc. Both the Russian Orbital Segment (ROS) and U.S. On-orbit Segment (USOS) have the capability and responsibility for providing on-orbit power sources for their own segments, as well as power sharing, as required, to support assembly and ISS operations for all International Partners. The ROS and USOS Electrical Power Systems (EPSs) are responsible for providing a safeguarded source of uninterrupted electrical power for ISS. To accomplish this, the EPS must generate and store power, convert and distribute power to users, protect both the system and users from electrical hazards, and provide the means for controlling and monitoring system performance. These functions are performed by several pieces of interrelated ISS hardware/software, which are each discussed in detail in Section 2. However, to provide the proper context for the detailed discussion, it is helpful to take a "big picture" look at the EPS system, its responsibilities, architecture, and components.

The USOS EPS is designed to be a distributed power system; i.e., power is produced in localized areas and then distributed to various modules. This functional design is similar to the process used by municipal electric utilities to provide electrical power to users.

High voltage power or "primary power" is generated in a centralized power plant and distributed throughout the area via transmission lines.

Before power is delivered to users, the voltage is stepped down by a transformer to the user-required regulated voltage level.

"Secondary power" (power transmitted at the user-required voltage level) is distributed to nearby locations and is further divided and routed by distribution boxes to provide electricity to many individual users.

An analogous process is used on ISS. USOS EPS design incorporates modules (called Photovoltaic Modules) that are dedicated to generating and storing power. These modules or "power plants" provide two sources of primary power (160 V dc) called power channels. During both insolation and eclipse, each power channel provides a continuous supply of power for distribution throughout ISS. Primary power is then converted to secondary power (124 V dc) in proximity to its intended users. From the converters, secondary power is distributed along a variety of paths to individual ISS power users. This two-level power system allows EPS to compensate for factors such as line losses, hardware degradation, and solar array aging within the primary power system while providing consistent secondary voltage for ISS users. Per this distributed design, primary power is used when transmission over significant distances is required and secondary power is for distribution locally.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Learn about the International Space Station (ISS) from the textbooks used by the astronauts! These astronaut and flight controller training manuals, produced by the Mission Operations Directorate (Space Flight Training Division branch) at NASA's Johnson Space Center, represent a major part of the formal flight crew training process. The manuals and workbooks are extremely detailed and comprehensive, and are designed for self-study. A full listing of all acronyms and abbreviations used in the text is included. They provide a superb way to learn about Station systems, hardware, and operational procedures. Special emphasis on crew interaction with the displays, controls, and hardware is included.

This training manual covers the ISS electrical power system (EPS). The International Space Station (ISS) requires electrical power for all ISS functions: command and control, communications, lighting, life support, etc. Both the Russian Orbital Segment (ROS) and U.S. On-orbit Segment (USOS) have the capability and responsibility for providing on-orbit power sources for their own segments, as well as power sharing, as required, to support assembly and ISS operations for all International Partners. The ROS and USOS Electrical Power Systems (EPSs) are responsible for providing a safeguarded source of uninterrupted electrical power for ISS. To accomplish this, the EPS must generate and store power, convert and distribute power to users, protect both the system and users from electrical hazards, and provide the means for controlling and monitoring system performance. These functions are performed by several pieces of interrelated ISS hardware/software, which are each discussed in detail in Section 2. However, to provide the proper context for the detailed discussion, it is helpful to take a "big picture" look at the EPS system, its responsibilities, architecture, and components.

The USOS EPS is designed to be a distributed power system; i.e., power is produced in localized areas and then distributed to various modules. This functional design is similar to the process used by municipal electric utilities to provide electrical power to users.

High voltage power or "primary power" is generated in a centralized power plant and distributed throughout the area via transmission lines.

Before power is delivered to users, the voltage is stepped down by a transformer to the user-required regulated voltage level.

"Secondary power" (power transmitted at the user-required voltage level) is distributed to nearby locations and is further divided and routed by distribution boxes to provide electricity to many individual users.

An analogous process is used on ISS. USOS EPS design incorporates modules (called Photovoltaic Modules) that are dedicated to generating and storing power. These modules or "power plants" provide two sources of primary power (160 V dc) called power channels. During both insolation and eclipse, each power channel provides a continuous supply of power for distribution throughout ISS. Primary power is then converted to secondary power (124 V dc) in proximity to its intended users. From the converters, secondary power is distributed along a variety of paths to individual ISS power users. This two-level power system allows EPS to compensate for factors such as line losses, hardware degradation, and solar array aging within the primary power system while providing consistent secondary voltage for ISS users. Per this distributed design, primary power is used when transmission over significant distances is required and secondary power is for distribution locally.

More books from Progressive Management

Cover of the book China Policies and Controversies: U.S. Military Papers - PLA, Deception, Maritime Quest, Navy, Taiwan Arms Sales, Turkey and China, plus 2014 U.S. Intelligence Threat Assessment by Progressive Management
Cover of the book Images of Inherited War: Three American Presidents in Vietnam - Unique History, Kennedy, Johnson, Nixon, Camelot, Containment, Cam Ranh Bay, Posse of Lies, Space Program, New Myth for an Old War by Progressive Management
Cover of the book Biological Incident Operations: A Guide for Law Enforcement - Terrorism Response, Protection, Intelligence, Investigation, Incidents, Personal Protection by Progressive Management
Cover of the book 2011 Official Dictionary of Nuclear, Radiation, and Radiological Terms and Acronyms: Nuclear Power Plants, Atomic Weapons, Military Stockpile, Radiation Medicine by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Domestic Support Operations Field Manual - FM 100-19 (Value-Added Professional Format Series) by Progressive Management
Cover of the book Al-Anbar Awakening: Volume I - American Perspectives, U.S. Marines and Counterinsurgency in Iraq, 2004-2009, Blackwater, Fallujah, al-Qaeda, Counterinsurgency, Ramadi, Turning the Tide by Progressive Management
Cover of the book 21st Century Understanding Cancer Toolkit: Complete Guide to Clinical Trials - Finding Trials, Benefits and Risks, Protocols, Drugs and Therapies, In-Depth Workbooks and Guides for Outreach by Progressive Management
Cover of the book Kuwait in Perspective: Orientation Guide and Arabic Cultural Orientation: Geography, History, Economy, Security, al-Jahra, Persia, Iraq Invasion, Persian Gulf War, Bidoon, Mubarak the Great, Oil by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Soldier as a System (SaaS) - TRADOC 525-97, Capstone Concept, Future Combat Force Capabilities (Professional Format Series) by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Opposing Force OPFOR Worldwide Equipment Guide (WEG) Part 3 - Ground Systems - Reconnaissance, including Russian, Chinese, U.S., Sensors, Radar, UAV, Night Vision by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: U.S. Coast Guard (USCG) Marine Safety Manual Volume One, Marine Safety Program, Environmental Response, Commercial Vessel Safety, Boating Safety by Progressive Management
Cover of the book Understanding American Identity: An Introduction - Comparison with Roman and Soviet Identity, Role of Patriotism, Nationalism, Separable Identities, National Service, Civic Education, and Technology by Progressive Management
Cover of the book Information Assurance: Trends in Vulnerabilities, Threats, and Technologies - Electromagnetic Pulse Attack (EMP), Countermeasures, Warfighter Cyber Security, Network Centric Warfare by Progressive Management
Cover of the book The Effects of Nuclear War: Tutorial on a Nuclear Weapon over Detroit or Leningrad, Civil Defense, Attack Cases and Long-Term Effects, Economic Damage, Fictional Account, Radiological Exposure by Progressive Management
Cover of the book The Role of Small States in the Post-Cold War Era: The Case of Belarus - President Alexander Lukashenko, Putin, Medvedev, Iranian Relationship, Gas Blackmail, Mahmoud Ahmadinejad by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy