Increased Biodiesel Efficiency

Alternatives for Production, Stabilization, Characterization and Use of Coproduct

Nonfiction, Science & Nature, Science, Physics, Energy, Chemistry, General Chemistry, Technology
Cover of the book Increased Biodiesel Efficiency by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319735528
Publisher: Springer International Publishing Publication: January 28, 2018
Imprint: Springer Language: English
Author:
ISBN: 9783319735528
Publisher: Springer International Publishing
Publication: January 28, 2018
Imprint: Springer
Language: English

This book advances the use of biodiesel—more environmentally friendly than traditional fossil fuels—by showing how it can be synthesized at a lower cost, with greater efficiency and as a more pure and stable product. It presents methods based on fluorescence spectroscopy, which are less time-consuming than the traditional Rancimat analysis for monitoring stability, and are therefore less prone to allowing oxidative decay in the biofuel. Biodiesel exploits a variety of raw materials, from freshly harvested cottonseed to recycled cooking oil. These are cheap to produce and generate fuel lower in polluting sulphur and aromatic compounds than its petroleum-based equivalent.

Beginning by addressing different protocols for synthesis based on fatty acids, methyl and ethyl esters, it then describes chemical analyses essential to establishing the purity of the biodiesel. It highlights in detail the use of multifunctional and synthetic antioxidants, and investigates the impact of synthetic chalcones and their derivatives on the oxidative stability of biodiesel.

The author goes on to explain how to ameliorate various influences – UV irradiation and metal contaminants for example – which increase the hazards of oxidation, such as degradation and instability. New pre-treatment procedures performed using ultrasonic energies, thermostatic bath and vortex stirring are not only more environmentally friendly, but cut down on the time-consuming process of determining metal content, and allow for the use of more environmentally friendly aqueous reagents. The book investigates and demonstrates these techniques on the basis of real-world results.

Further, it suggests the practical uses of byproducts of biodiesel production, for example, using glycerol as a source of energy and high valuable chemicals. These useful techniques aid any researcher exploring the production process of biodiesel and its stabilization and characteristics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book advances the use of biodiesel—more environmentally friendly than traditional fossil fuels—by showing how it can be synthesized at a lower cost, with greater efficiency and as a more pure and stable product. It presents methods based on fluorescence spectroscopy, which are less time-consuming than the traditional Rancimat analysis for monitoring stability, and are therefore less prone to allowing oxidative decay in the biofuel. Biodiesel exploits a variety of raw materials, from freshly harvested cottonseed to recycled cooking oil. These are cheap to produce and generate fuel lower in polluting sulphur and aromatic compounds than its petroleum-based equivalent.

Beginning by addressing different protocols for synthesis based on fatty acids, methyl and ethyl esters, it then describes chemical analyses essential to establishing the purity of the biodiesel. It highlights in detail the use of multifunctional and synthetic antioxidants, and investigates the impact of synthetic chalcones and their derivatives on the oxidative stability of biodiesel.

The author goes on to explain how to ameliorate various influences – UV irradiation and metal contaminants for example – which increase the hazards of oxidation, such as degradation and instability. New pre-treatment procedures performed using ultrasonic energies, thermostatic bath and vortex stirring are not only more environmentally friendly, but cut down on the time-consuming process of determining metal content, and allow for the use of more environmentally friendly aqueous reagents. The book investigates and demonstrates these techniques on the basis of real-world results.

Further, it suggests the practical uses of byproducts of biodiesel production, for example, using glycerol as a source of energy and high valuable chemicals. These useful techniques aid any researcher exploring the production process of biodiesel and its stabilization and characteristics.

More books from Springer International Publishing

Cover of the book Software Engineering for Resilient Systems by
Cover of the book Ovarian Cancers by
Cover of the book MRI of Rheumatic Spine by
Cover of the book Intelligent Virtual Agents by
Cover of the book Strategy and Game Theory by
Cover of the book Thermoelectrics by
Cover of the book Time in Physics by
Cover of the book Review of Medical Dosimetry by
Cover of the book Computer Vision – ACCV 2018 by
Cover of the book Microfluidic Fuel Cells and Batteries by
Cover of the book Explaining Monetary and Financial Innovation by
Cover of the book Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015 by
Cover of the book Macroevolution by
Cover of the book The Franciscan Invention of the New World by
Cover of the book Criticality, Teacher Identity, and (In)equity in English Language Teaching by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy