Georg Cantor - Grundlagen einer allgemeinen Mannigfaltigkeitslehre

Nonfiction, Science & Nature, Mathematics
Cover of the book Georg Cantor - Grundlagen einer allgemeinen Mannigfaltigkeitslehre by Daniel Burckhardt, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Daniel Burckhardt ISBN: 9783638090018
Publisher: GRIN Verlag Publication: May 12, 2000
Imprint: GRIN Verlag Language: German
Author: Daniel Burckhardt
ISBN: 9783638090018
Publisher: GRIN Verlag
Publication: May 12, 2000
Imprint: GRIN Verlag
Language: German
Studienarbeit aus dem Jahr 1998 im Fachbereich Mathematik - Sonstiges, Technische Universität Berlin, Veranstaltung: Proseminar von Kant bis Hilbert: Grundlagentexte der Mathematik, Sprache: Deutsch, Abstract: Georg Cantors 'Grundlagen einer allgemeinen Mannigfaltigkeitslehre' bilden den fünften Teil einer Serie von sechs Artikeln, die unter dem gemeinsamen Titel 'Über unendliche lineare Punktmannigfaltigkeiten' zwischen 1879 und 1884 in den Mathematischen Annalen abgedruckt wurden. Innerhalb dieser Serie gebührt den 'Grundlagen' eine besondere Stellung: Sie sind als geschlossene Darstellung derjenigen Ergebnisse konzipiert, die den Kern der zwischen 1871 und 1884 geschaffenen Cantorschen Mengenlehre bilden. 1883, also noch vor ihrer Publikation in den Annalen, wurden sie - um den Untertitel 'Ein mathematisch-philosophischer Versuch in die Lehre des Unendlichen' und ein Vorwort erweitert - als Separatdruck bei Teubner herausgegeben. Dazu Cantor (im in der Gesamtausgabe seiner Werke nicht abgedruckten Vorwort): 'Since the present essay carries the subject much further, and since its main thesis is independent of the earlier articles, I decided to publish it separately under a title that corresponds more closely to its contents.' Ausdrücklich wendet er sich dabei an ein doppeltes Publikum, den mit den aktuellen mathematischen Entwicklungen vertrauten Philosophen, sowie den philosophisch vorgebildeten Mathematiker. Der erste Abschnitt liefert einige Angaben über die bewegte Biographie von Georg Cantor. Im Anschluss daran betrachte ich den Gang der Arbeiten, die den jungen Privatdozenten zu den ersten Arbeiten über die Mengenlehre führt. Abschnitt 4 konzentriert sich auf die 'Grundlagen'. Sie dienen mir als Ausgangspunkt zur Untersuchung wichtiger Punkte in Cantors Werk: Mengenlehre, die Grundlegung der reellen Zahlen, transfinite Grössen sowie philosophische Betrachtungen der Mathematik.
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Studienarbeit aus dem Jahr 1998 im Fachbereich Mathematik - Sonstiges, Technische Universität Berlin, Veranstaltung: Proseminar von Kant bis Hilbert: Grundlagentexte der Mathematik, Sprache: Deutsch, Abstract: Georg Cantors 'Grundlagen einer allgemeinen Mannigfaltigkeitslehre' bilden den fünften Teil einer Serie von sechs Artikeln, die unter dem gemeinsamen Titel 'Über unendliche lineare Punktmannigfaltigkeiten' zwischen 1879 und 1884 in den Mathematischen Annalen abgedruckt wurden. Innerhalb dieser Serie gebührt den 'Grundlagen' eine besondere Stellung: Sie sind als geschlossene Darstellung derjenigen Ergebnisse konzipiert, die den Kern der zwischen 1871 und 1884 geschaffenen Cantorschen Mengenlehre bilden. 1883, also noch vor ihrer Publikation in den Annalen, wurden sie - um den Untertitel 'Ein mathematisch-philosophischer Versuch in die Lehre des Unendlichen' und ein Vorwort erweitert - als Separatdruck bei Teubner herausgegeben. Dazu Cantor (im in der Gesamtausgabe seiner Werke nicht abgedruckten Vorwort): 'Since the present essay carries the subject much further, and since its main thesis is independent of the earlier articles, I decided to publish it separately under a title that corresponds more closely to its contents.' Ausdrücklich wendet er sich dabei an ein doppeltes Publikum, den mit den aktuellen mathematischen Entwicklungen vertrauten Philosophen, sowie den philosophisch vorgebildeten Mathematiker. Der erste Abschnitt liefert einige Angaben über die bewegte Biographie von Georg Cantor. Im Anschluss daran betrachte ich den Gang der Arbeiten, die den jungen Privatdozenten zu den ersten Arbeiten über die Mengenlehre führt. Abschnitt 4 konzentriert sich auf die 'Grundlagen'. Sie dienen mir als Ausgangspunkt zur Untersuchung wichtiger Punkte in Cantors Werk: Mengenlehre, die Grundlegung der reellen Zahlen, transfinite Grössen sowie philosophische Betrachtungen der Mathematik.

More books from GRIN Verlag

Cover of the book Die Wohngemeinschaft als Familienform außerhalb der Ehe by Daniel Burckhardt
Cover of the book Die Architektur der 50er und 60er Jahre in Deutschland - Veranstaltungs- und Kulturbauten by Daniel Burckhardt
Cover of the book Are there similarities in first and second language acquisition? by Daniel Burckhardt
Cover of the book Migration unter den Bedingungen der sich verändernden internationalen Arbeitsteilung und der Globalisierung by Daniel Burckhardt
Cover of the book Zur Psychodynamik des Suizids by Daniel Burckhardt
Cover of the book Moderner Antisemitismus - Judenfeindlichkeit nach 1945 by Daniel Burckhardt
Cover of the book Artenschutz im Sachunterricht der Grundschule. Das Thema Krokodile by Daniel Burckhardt
Cover of the book Bankinternes Rating by Daniel Burckhardt
Cover of the book Betriebsübergang bei Ausgliederung und Verschmelzung nach dem UmwG by Daniel Burckhardt
Cover of the book Verhaltensauffälligkeiten bei gehörlosen Kindern und Jugendlichen. Grundlegende Begriffe by Daniel Burckhardt
Cover of the book Diabetes mellitus bei Kindern. Welche positiven Effekte kann Sport haben? by Daniel Burckhardt
Cover of the book Trainingsplanung nach der ILB-Methode für eine 21-jährige Kandidatin by Daniel Burckhardt
Cover of the book Salinger's Holden Caulfield (The Catcher in the Rye) by Daniel Burckhardt
Cover of the book Das Fremd- und Selbstbild der Iphigenie und seine Auswirkung auf das Schauspiel 'Iphigenie auf Tauris' by Daniel Burckhardt
Cover of the book Der Gießen-Test. Funktion und Möglichkeiten seiner Verwendung im Kontext der Sozialen Arbeit by Daniel Burckhardt
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy