Effective Mathematics of the Uncountable

Nonfiction, Science & Nature, Mathematics, Logic, Computers, General Computing
Cover of the book Effective Mathematics of the Uncountable by , Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781107521186
Publisher: Cambridge University Press Publication: October 31, 2013
Imprint: Cambridge University Press Language: English
Author:
ISBN: 9781107521186
Publisher: Cambridge University Press
Publication: October 31, 2013
Imprint: Cambridge University Press
Language: English

Classical computable model theory is most naturally concerned with countable domains. There are, however, several methods – some old, some new – that have extended its basic concepts to uncountable structures. Unlike in the classical case, however, no single dominant approach has emerged, and different methods reveal different aspects of the computable content of uncountable mathematics. This book contains introductions to eight major approaches to computable uncountable mathematics: descriptive set theory; infinite time Turing machines; Blum-Shub-Smale computability; Sigma-definability; computability theory on admissible ordinals; E-recursion theory; local computability; and uncountable reverse mathematics. This book provides an authoritative and multifaceted introduction to this exciting new area of research that is still in its early stages. It is ideal as both an introductory text for graduate and advanced undergraduate students and a source of interesting new approaches for researchers in computability theory and related areas.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Classical computable model theory is most naturally concerned with countable domains. There are, however, several methods – some old, some new – that have extended its basic concepts to uncountable structures. Unlike in the classical case, however, no single dominant approach has emerged, and different methods reveal different aspects of the computable content of uncountable mathematics. This book contains introductions to eight major approaches to computable uncountable mathematics: descriptive set theory; infinite time Turing machines; Blum-Shub-Smale computability; Sigma-definability; computability theory on admissible ordinals; E-recursion theory; local computability; and uncountable reverse mathematics. This book provides an authoritative and multifaceted introduction to this exciting new area of research that is still in its early stages. It is ideal as both an introductory text for graduate and advanced undergraduate students and a source of interesting new approaches for researchers in computability theory and related areas.

More books from Cambridge University Press

Cover of the book The Cambridge Handbook of the Psychology of Prejudice by
Cover of the book Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors by
Cover of the book Political Philosophy in the Twentieth Century by
Cover of the book From Self to Social Relationships by
Cover of the book Spatial Analysis of Coastal Environments by
Cover of the book Reassessing Paleolithic Subsistence by
Cover of the book Estuaries by
Cover of the book Principles of Pharmacogenetics and Pharmacogenomics by
Cover of the book The Constitution and the Future of Criminal Justice in America by
Cover of the book Ottoman Women during World War I by
Cover of the book The Ballad in American Popular Music by
Cover of the book Teaching and Learning Strategies by
Cover of the book Financial Assets, Debt and Liquidity Crises by
Cover of the book Elementary Syntactic Structures by
Cover of the book Pindar's Poetics of Immortality by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy