Differential Geometry of Warped Product Manifolds and Submanifolds

Nonfiction, Science & Nature, Mathematics, Geometry, Science, Physics, Relativity
Cover of the book Differential Geometry of Warped Product Manifolds and Submanifolds by Bang-Yen Chen, World Scientific Publishing Company
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Bang-Yen Chen ISBN: 9789813208940
Publisher: World Scientific Publishing Company Publication: May 29, 2017
Imprint: WSPC Language: English
Author: Bang-Yen Chen
ISBN: 9789813208940
Publisher: World Scientific Publishing Company
Publication: May 29, 2017
Imprint: WSPC
Language: English

A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry — except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson–Walker models, are warped product manifolds.

The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson–Walker's and Schwarzschild's.

The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.

The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.

Contents:

  • Riemannian and Pseudo-Riemannian Manifolds
  • Submanifolds
  • Warped Product Manifolds
  • Robertson-Walker Spacetimes and Schwarzschild Solution
  • Contact Metric Manifolds and Submersions
  • Kähler and Pseudo-Kähler Manifolds
  • Slant Submanifolds
  • Generic Submanifolds of Kähler Manifolds
  • CR-submanifolds of Kähler Manifolds
  • Warped Products in Riemannian and Kähler Manifolds
  • Warped Product Submanifolds of Kähler Manifolds
  • CR-warped Products in Complex Space Forms
  • More on CR-warped Products in Complex Space Forms
  • δ-invariants, Submersions and Warped Products
  • Warped Products in Nearly Kähler Manifolds
  • Warped Products in Para-Kähler Manifolds
  • Warped Products in Sasakian Manifolds
  • Warped Products in Affine Spaces

Readership: Graduate students and researchers interested in warped product manifolds and submanifolds in geometry, mathematical physics and general relativity.
Key Features:

  • Provides an updated and detailed account on results of warped product manifolds and warped product submanifolds
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry — except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson–Walker models, are warped product manifolds.

The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson–Walker's and Schwarzschild's.

The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.

The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.

Contents:

Readership: Graduate students and researchers interested in warped product manifolds and submanifolds in geometry, mathematical physics and general relativity.
Key Features:

More books from World Scientific Publishing Company

Cover of the book Inequalities in Analysis and Probability by Bang-Yen Chen
Cover of the book Grammar of Complexity by Bang-Yen Chen
Cover of the book Understanding Our Unseen Reality by Bang-Yen Chen
Cover of the book International Trade, Distribution and Development by Bang-Yen Chen
Cover of the book Global School Feeding Sourcebook by Bang-Yen Chen
Cover of the book DRUMS by Bang-Yen Chen
Cover of the book The Handbook on Reasoning-Based Intelligent Systems by Bang-Yen Chen
Cover of the book Global Credit Review by Bang-Yen Chen
Cover of the book Mechanics and Architectural Design by Bang-Yen Chen
Cover of the book Data Mining with Decision Trees by Bang-Yen Chen
Cover of the book Social Suffering and Political Confession by Bang-Yen Chen
Cover of the book Acupuncture by Bang-Yen Chen
Cover of the book Glassy Disordered Systems by Bang-Yen Chen
Cover of the book Interaction of Mid-Infrared Parametric Waves in Laser Plasmas by Bang-Yen Chen
Cover of the book Cosmic Paradoxes by Bang-Yen Chen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy