Deep Learning Classifiers with Memristive Networks

Theory and Applications

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Artificial Intelligence, General Computing
Cover of the book Deep Learning Classifiers with Memristive Networks by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783030145248
Publisher: Springer International Publishing Publication: April 8, 2019
Imprint: Springer Language: English
Author:
ISBN: 9783030145248
Publisher: Springer International Publishing
Publication: April 8, 2019
Imprint: Springer
Language: English

This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.

More books from Springer International Publishing

Cover of the book Intelligent Human Computer Interaction by
Cover of the book Practical Urodynamics for the Clinician by
Cover of the book Contemporary Urban Design Thinking by
Cover of the book Dictionary of Corporate Social Responsibility by
Cover of the book Chromosomal Translocations and Genome Rearrangements in Cancer by
Cover of the book Brewing Science: A Multidisciplinary Approach by
Cover of the book Medical and Mental Health During Childhood by
Cover of the book Data and Decision Sciences in Action by
Cover of the book Intelligent Software Methodologies, Tools and Techniques by
Cover of the book Biomass and Bioenergy by
Cover of the book The Infrastructure We Ride On by
Cover of the book Unraveling the Voynich Codex by
Cover of the book Neuroimmune Pharmacology by
Cover of the book Unrecognized States and Secession in the 21st Century by
Cover of the book Database Systems for Advanced Applications by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy