Beauville Surfaces and Groups

Nonfiction, Science & Nature, Mathematics, Geometry, Algebra
Cover of the book Beauville Surfaces and Groups by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319138626
Publisher: Springer International Publishing Publication: April 14, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319138626
Publisher: Springer International Publishing
Publication: April 14, 2015
Imprint: Springer
Language: English

This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces.

Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject.

These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville surfaces and groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces.

Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject.

These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville surfaces and groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.

More books from Springer International Publishing

Cover of the book Global Leisure and the Struggle for a Better World by
Cover of the book A Combinatorial Perspective on Quantum Field Theory by
Cover of the book Subarachnoid Hemorrhage in Clinical Practice by
Cover of the book Ultra Low Power ECG Processing System for IoT Devices by
Cover of the book Lakes of the World with Google Earth by
Cover of the book Choledocholithiasis by
Cover of the book Sport and Physical Activity in the Heat by
Cover of the book The Neurological Emergence of Epilepsy by
Cover of the book Predicting Real World Behaviors from Virtual World Data by
Cover of the book Developing Community Schools, Community Learning Centers, Extended-service Schools and Multi-service Schools by
Cover of the book Information-Theoretic Evaluation for Computational Biomedical Ontologies by
Cover of the book Chaos, Complexity and Leadership 2014 by
Cover of the book Exploring the Security Landscape: Non-Traditional Security Challenges by
Cover of the book Controlling Language in Industry by
Cover of the book Towards the Pragmatic Core of English for European Communication by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy